Rational solitary wave solutions for some nonlinear differential difference equations
نویسنده
چکیده
In this article, we put a direct method to construct the rational solitary wave solutions for some nonlinear differential difference equations in mathematical physics which may be called the rational solitary wave difference method. We use the proposed method to construct the rational solitary exact solutions for some nonlinear differential difference equations via the lattice equation, the discrete nonlinear Klein Gordon equation. The proposed method is more effective and powerful to obtain many rational solitary exact solutions for nonlinear differential difference equations.
منابع مشابه
Application of the tan(phi/2)-expansion method for solving some partial differential equations
In this paper, the improved -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملSolitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملConstuction of solitary solutions for nonlinear differential-difference equations via Adomain decomposition method
Here, Adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. Two models of special interest in physics, namely, theHybrid nonlinear differential difference equation and Relativistic Toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
متن کاملRational expansion method of exponent function for solving exact solutions to nonlinear differential-difference equations
A new method named rational expansion method of exponent function is presented to find exact traveling wave solutions of differential-difference equations. This method generalizes the so-called tanh-method and other similar methods. Some examples are dealt with and their abundant exact solutions which include solitary solutions and periodic solutions are obtained. Among them, many solutions are...
متن کامل